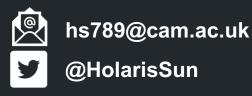
Inverse RL Meets LLMs:

RL for better Prompting, Fine-Tuning, and Inference-Time Optimization

Hao Sun Oct 2024

van_der_Schaar

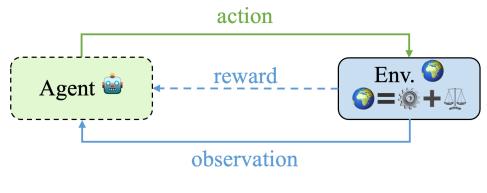


Content

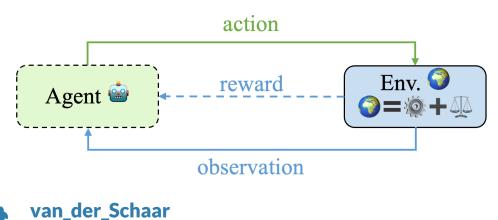
- Preliminaries
 - Key Concepts in RL and Inverse RL
 - Key Concepts in LLMs
- Inverse RL Meets LLMs
 - What Makes ChatGPT Great
 - What Makes o1 Better
- Building Reward Models from Data
 - Binary data: Offline Inverse RL for Mathematical Reasoning
 - Preference data: Foundations of Preference-based Reward Modeling
 - Demonstration data: Inverse RL for Alignment from Demonstrations

hs789@cam.ac.uk

• Environment = Dynamics + Reward

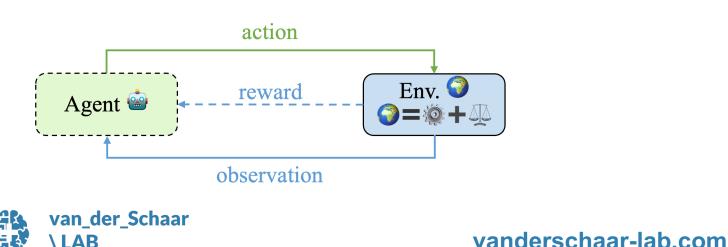


- Environment = Dynamics + Reward
- Learning from trial and error: *execution* & *evaluation* are expensive



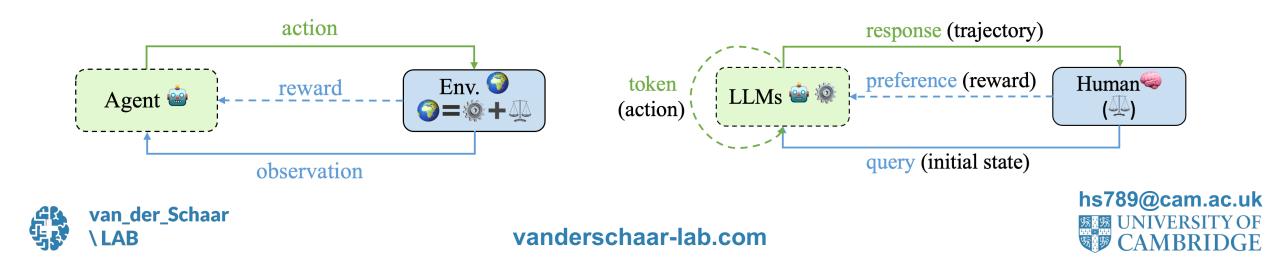
LAB

- Environment = Dynamics + Reward
- Learning from trial and error: *execution & evaluation* are expensive
- Learning by imitating is easier: *Behavior Clone*

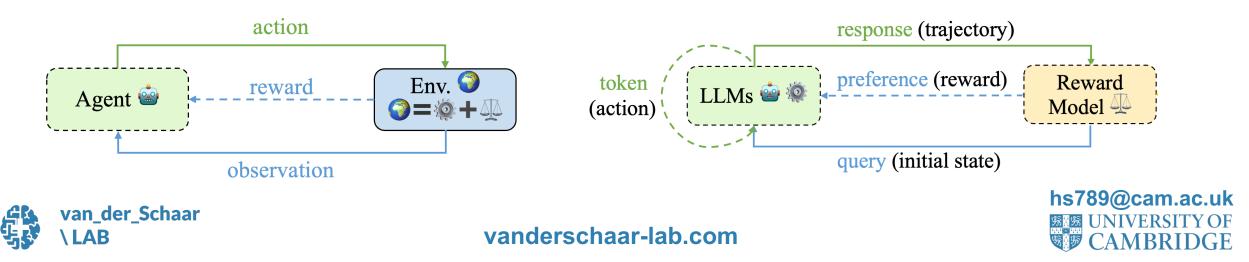


hs789@cam.ac.uk

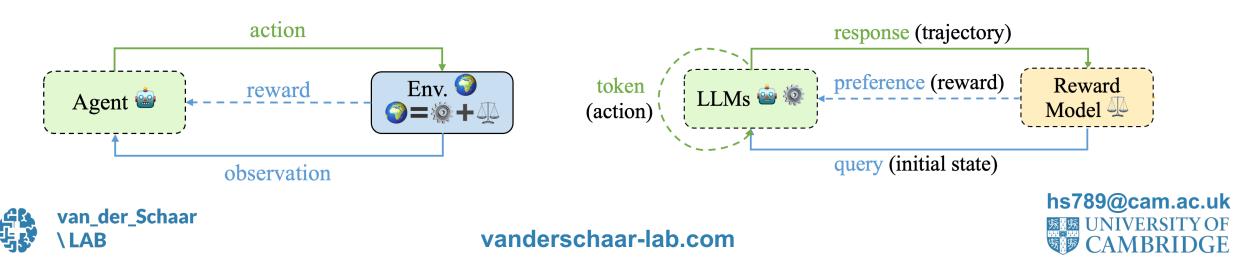
- Environment = Dynamics + Reward
- Learning from trial and error: *execution & evaluation* are expensive
- Learning by imitating is easier: *Behavior Clone*
- LLM is a special case --- only reward is expensive



- Environment = Dynamics + Reward
- Learning from trial and error: *execution & evaluation* are expensive
- Learning by imitating is easier: Behavior Clone
- LLM is a special case --- only reward is expensive *Reward Modeling* is essential!



- Environment = Dynamics + Reward
- Learning from trial and error: executi
- Learning by imitating is easier: *Behav* AlphaGo
- LLM is a special case --- only reward is expensive *Reward Modeling* is essential!



ALPHAGO 00:08:32

LEE SEDOL 00:00:27

- How are LLMs trained?
 - Pre-training phase: supervised-learning
 - Post-training phase: SFT, RLHF ...

- How are LLMs trained?
 - Pre-training phase: supervised-learning
 - Post-training phase: SFT, RLHF ...

behavior cloning --- from the perspective of Inverse RL

- How are LLMs trained?
 - Pre-training phase: supervised-learning
 - Post-training phase: SFT, RLHF ...

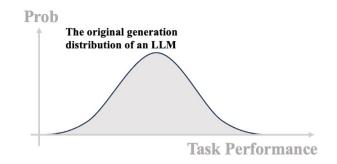
--- Imitating Natural Language

- How are LLMs trained?
 - Pre-training phase: supervised-learning
 - Post-training phase: SFT, RLHF ...
- What are LLMs?
 - LLMs can provide approximate knowledge
 - But they are MERELY experts for ANYTHING. We need **Reward Models**

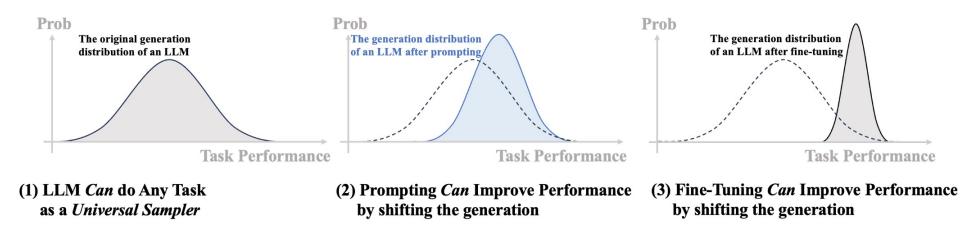
--- Imitating Natural Language

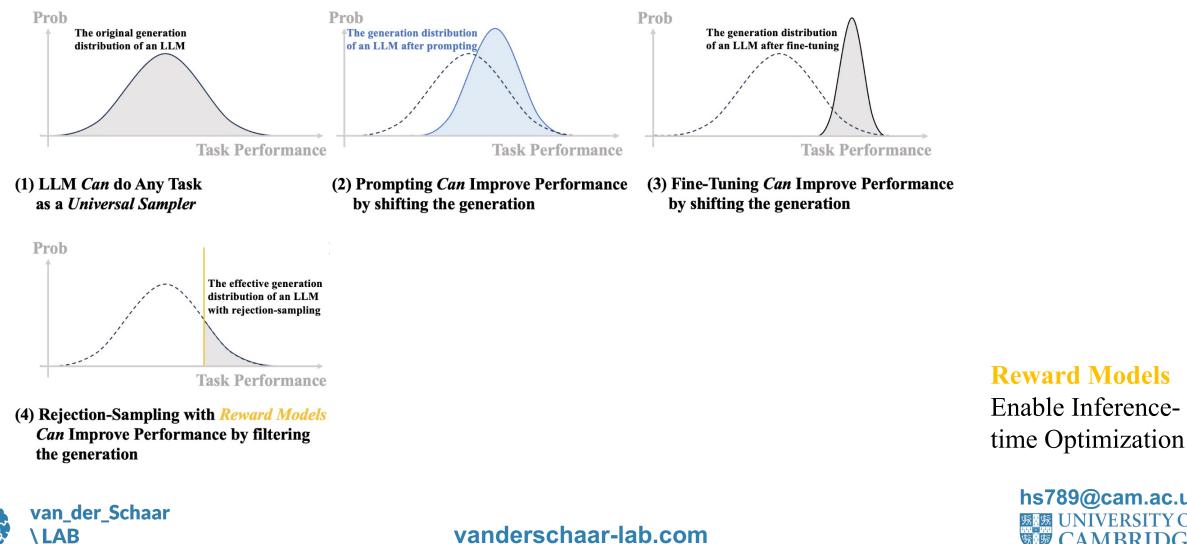
hs789@cam.ac.uk

[1] Kambhampati, Subbarao, et al. "LLMs Can't Plan, But Can Help Planning in LLM-Modulo Frameworks." arXiv preprint arXiv:2402.01817 (2024).

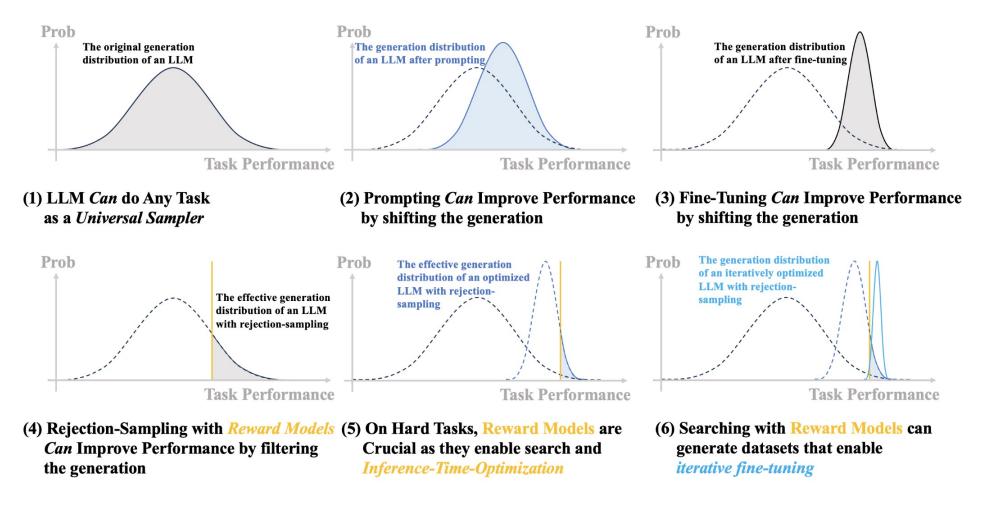


(1) LLM *Can* do Any Task as a *Universal Sampler*





hs789@cam.ac.uk CAMBRIDGE



Reward Models Enable Inferencetime Optimization

hs789@cam.ac.uk

影 B UNIVERSITY OF

CAMBRIDGE

• Reward models --- Foundation of LLM Optimization

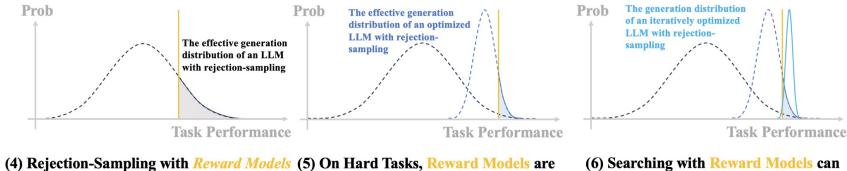
- Reward models --- Foundation of LLM Optimization
 - From an RL Perspective, RM is the only missing part of an "RL-solvable task"

Takeaways:

van_der_Schaar

AB

- Reward models --- Foundation of LLM Optimization
 - From an RL Perspective, RM is the only missing part of an "RL-solvable task"
 - From an LLM Perspective, RM enables Inference-time Optimization



vanderschaar-lab.com

Rejection-Sampling with Reward Models(5) On Hard Tasks, Reward Models a
Can Improve Performance by filtering
the generation(5) On Hard Tasks, Reward Models a
Crucial as they enable search and
Inference-Time-Optimization

generate datasets that enable *iterative fine-tuning*

ALPHAGO 00:08:32

LEE SEDOL 00:00:27

RL x LLM: The Inverse and Forward

Inverse direction

Forward direction

RL x LLM: The Inverse and Forward

Inverse direction

Forward direction

Binary (Reasoning) [Prompt-OIRL]

Preference Data

[RMBeyondBT]

Demonstration

[InverseRLignment]

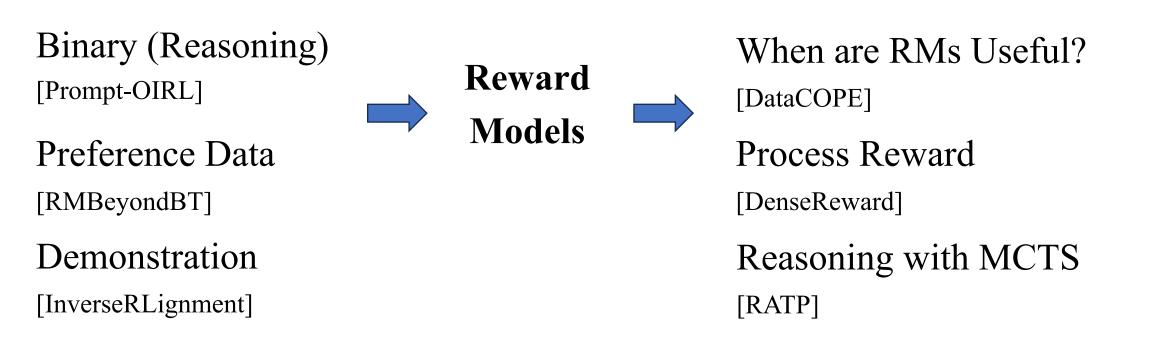
vanderschaar-lab.com

hs789@cam.ac.uk UNIVERSITY OF CAMBRIDGE

RL x LLM: The Inverse and Forward

Inverse direction

Forward direction



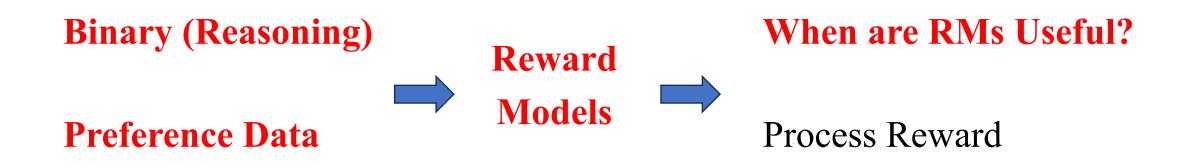
vanderschaar-lab.com

hs789@cam.ac.uk UNIVERSITY OF CAMBRIDGE

Key of ChatGPT: zero-shot CoT, RLHF, On-policy RMs

Inverse direction

Forward direction



Demonstration

Reasoning with MCTS

Key of o1 : Process Reward, Search-based generation, RMs

Inverse direction

Forward direction

Demonstration

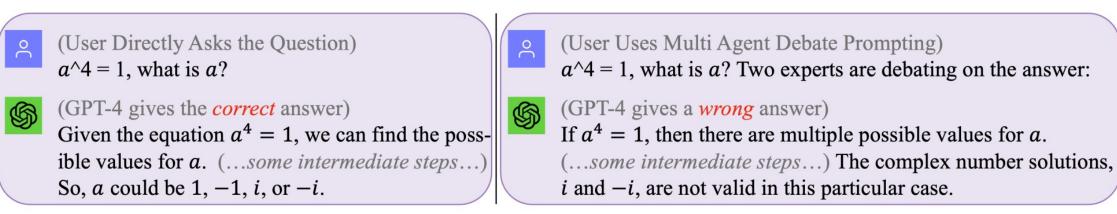
Reasoning with MCTS

Content

- Preliminaries
 - Key Concepts in RL and Inverse RL
 - Key Concepts in LLMs
- Inverse RL Meets LLMs
 - What Makes ChatGPT Great
 - What Makes o1 Better
- Building Reward Models from Data (Inverse)
 - Binary data: Offline Inverse RL for Mathematical Reasoning
 - Preference data: Foundations of Preference-based Reward Modeling
 - Demonstration data: Inverse RL for Alignment from Demonstrations

hs789@cam.ac.uk

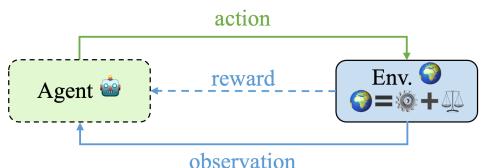
• Prompt engineering is useful, but empirical...



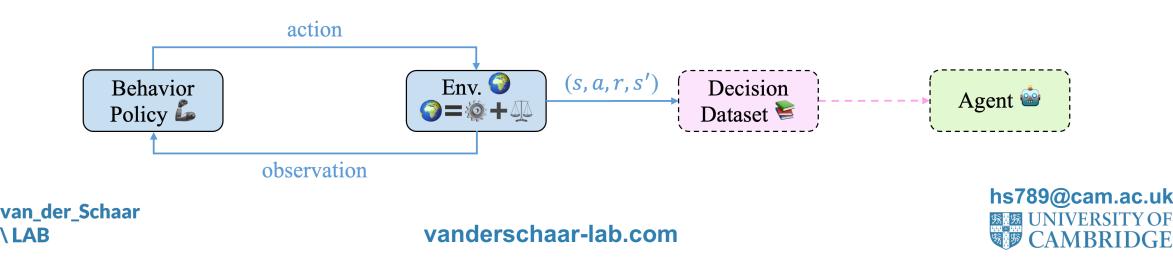
- Automatic prompt engineering is expensive...
 - Prompt-Dependent
 - Huge vocabulary space

hs789@cam.ac.uk

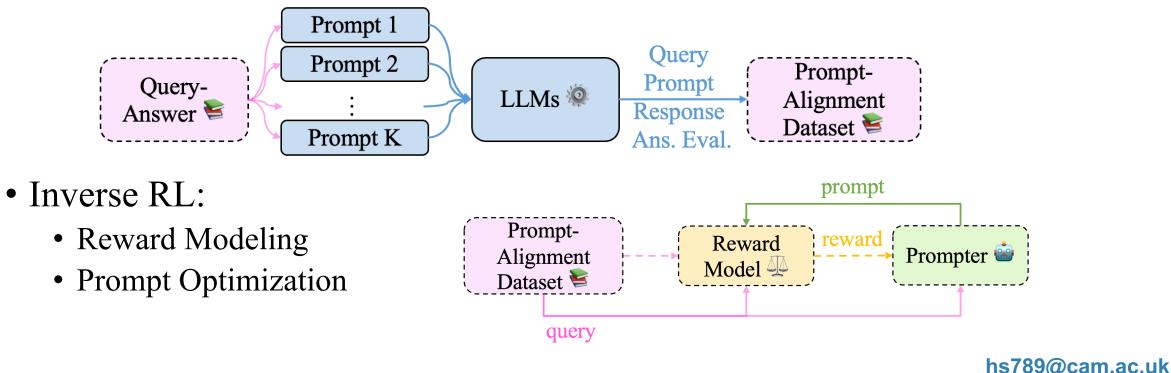
- Learning from demonstrations can be more efficient than from scratch
- RL Recap: Learning from interactions



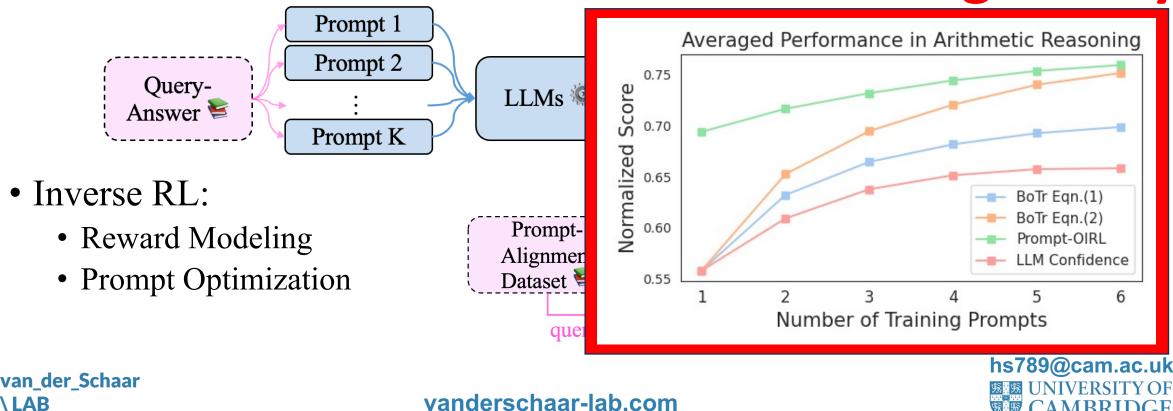
• Prompt Optimization as Inverse RL: learning from demonstrations



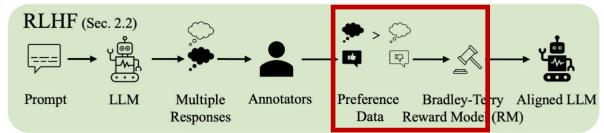
- Offline Inverse RL for Prompt Optimization
- Existence of demonstration dataset:



- Offline Inverse RL for Prompt Optimization
- Existence of demonstration dataset: Math Reasoning Ability



- In chat tasks, online preference data can be available
- How to build reward model?
 - RLHF: "use the Bradley-Terry Model"
 - But why?
- What is the Bradley Terry Model?
 - Player i, with ability score r_i
 - Player j, with ability score r_j
 - In a game between player i and j, $P(i \text{ wins } j) = \frac{r_i}{r_i + r_i}$



hs789@cam.ac.uk

- Classical Applications of the Bradley-Terry Models --- Parameter Estimation
 - In Chess/StarCraft/DOTA II: we estimate player scores using match history/outcomes
 - In LLM arena, we have 150 models, 2M competitions, each LLM plays 26,000+ games

DOTA 2 NEWS HEROPEDIA - LOGIN LANGUAGE - PLA	AY FOR FREE Rank* (UB)	Rank (StyleCtrl)	Model	Arena Score	95% CI 🔺	Votes	Organization 🔺
World Leaderboards	1	1	ChatGPT-40-latest (2024-09-03)	1340	+4/-5	31927	OpenAI
	1	1	o1-preview	1337	+4/-5	19924	OpenAI
Americas Europe SE Asia China	3	5	ol-mini	1309	+5/-4	21425	OpenAI
Americas Europe SE Asia China Last Update: 10/24/2024, 9:13:01 PM Next Update: 10/24/2024, 10:13:00 PM	3	3	Gemini-1.5-Pro-002	1303	+5/-5	13957	Google
Division Rank Player	4	3	Gemini-1.5-Pro-Exp-0827	1299	+4/-3	32393	Google
1 parkerstopedd 2 memoriem	6	8	Grok-2-08-13	1290	+4/-4	39193	XAI
3 NemeSis < 4 ES ElvisTeck-ShUra ■ 5 tv/depdoto ■	6	11	Yi-Lightning	1286	+4/-4	18864	01 AI
6 [FX]Checho ^{btury} 7 Xcs.xxxa III	6	3	GPT-40-2024-05-13	1285	+3/-2	101733	OpenAI
8 Lifilia 9 worthlessdogs 10 ebm.Magik 🖿	9	14	GLM-4-Plus	1275	+5/-4	18695	Zhipu AI

- Classical Applications of the Bradley-Terry Models --- Parameter Estimation
 - In Chess/StarCraft/DOTA II: we estimate player scores using match history/outcomes
 - In LLM arena, we have 150 models, 2M competitions, each LLM plays 26,000+ games

We need a **large number of matches/games** for a consistent estimation. e.g., consider sorting: we need *NlogN*

- Classical Applications of the Bradley-Terry Models --- Parameter Estimation
 - In Chess/StarCraft/DOTA II: we estimate player scores using match history/outcomes
 - In LLM arena, we have 150 models, 2M competitions, each LLM plays 26,000+ games

We need a **large number of matches/games** for a consistent estimation. e.g., consider sorting: we need *NlogN*

• In RLHF,

- we have m prompts, 2m responses --- 2m players
- Each pair only "compete" once --- $m \ll 2m\log(2m)$ comparisons
- ¹ We have more than 2m parameters to estimate --- ¹ ¹ ¹ we need predictions!

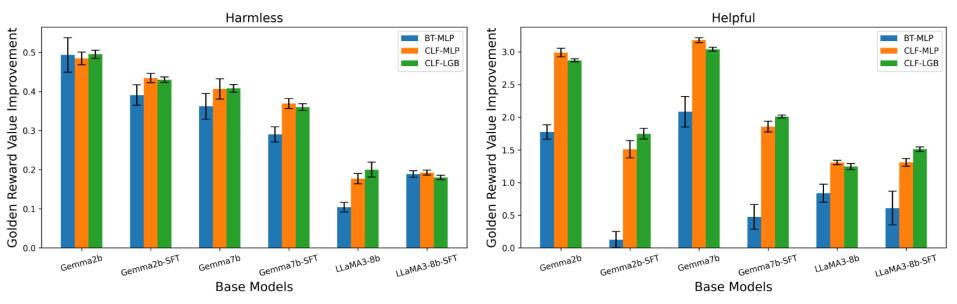
hs789@cam.ac.uk

- Why does BT model work?
 - We are working on the embedding space
 - Generalizable...
 - Theoretical justification is in the paper
- Is BT model necessary?
 - Rethinking the objective of BT model: precisely predicting win rates
 - Is it necessary in RLHF?
 - NO, we only need order consistency --- order of prediction is aligned with data

hs789@cam.ac.uk

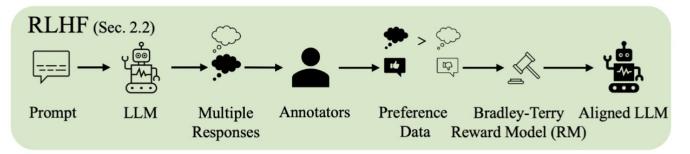
• Binary classification \bigcirc

- How good are classifiers?
 - Flexible
 - Better than BT models
 - Robust to annotation noises and data scarcity (more in paper)



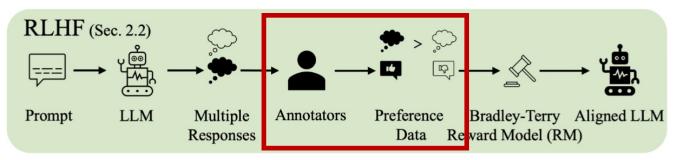
hs789@cam.ac.uk

• Common practice of alignment: RLHF



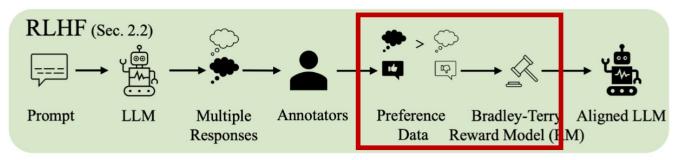
• Why do we need to align LLMs from demonstrations?

• Common practice of alignment: RLHF



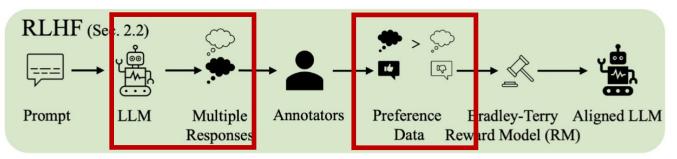
- Why do we need to align LLMs from demonstrations?
 - 1. Preference-based alignment is expensive

• Common practice of alignment: RLHF



- Why do we need to align LLMs from demonstrations?
 - 1. Preference-based alignment is expensive
 - 2. Assumptions such as Bradley-Terry models are needed

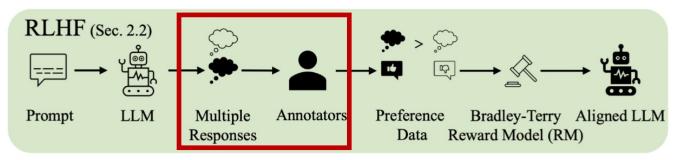
• Common practice of alignment: RLHF



- Why do we need to align LLMs from demonstrations?
 - 1. Preference-based alignment is expensive
 - 2. Assumptions such as Bradley-Terry models are needed
 - 3. Noisy preference annotations

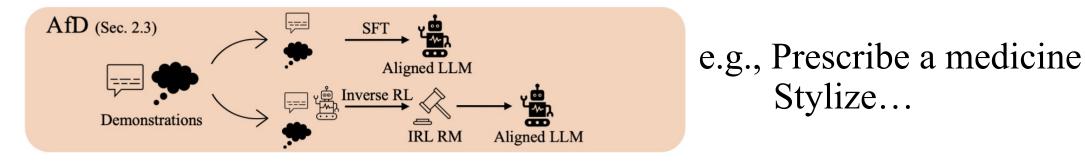
hs789@cam.ac.uk

• Common practice of alignment: RLHF

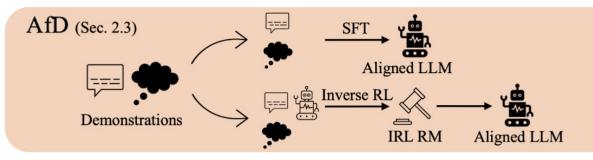


- Why do we need to align LLMs from demonstrations?
 - 1. Preference-based alignment is expensive
 - 2. Assumptions such as Bradley-Terry models are needed
 - 3. Noisy preference annotations
 - 4. Privacy concerns

• Our solution: Alignment from Demonstrations using Inverse RL

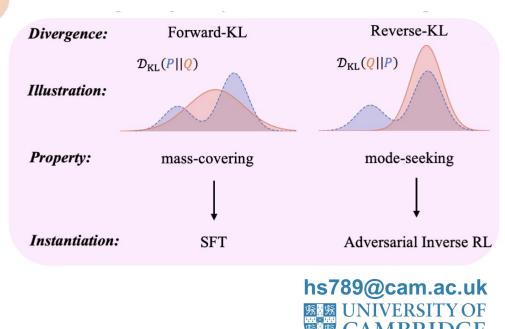


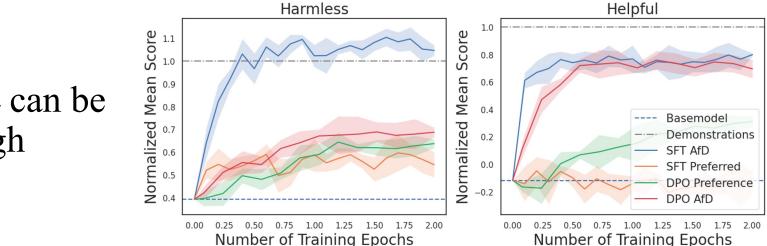
• Our solution: Alignment from Demonstrations using Inverse RL

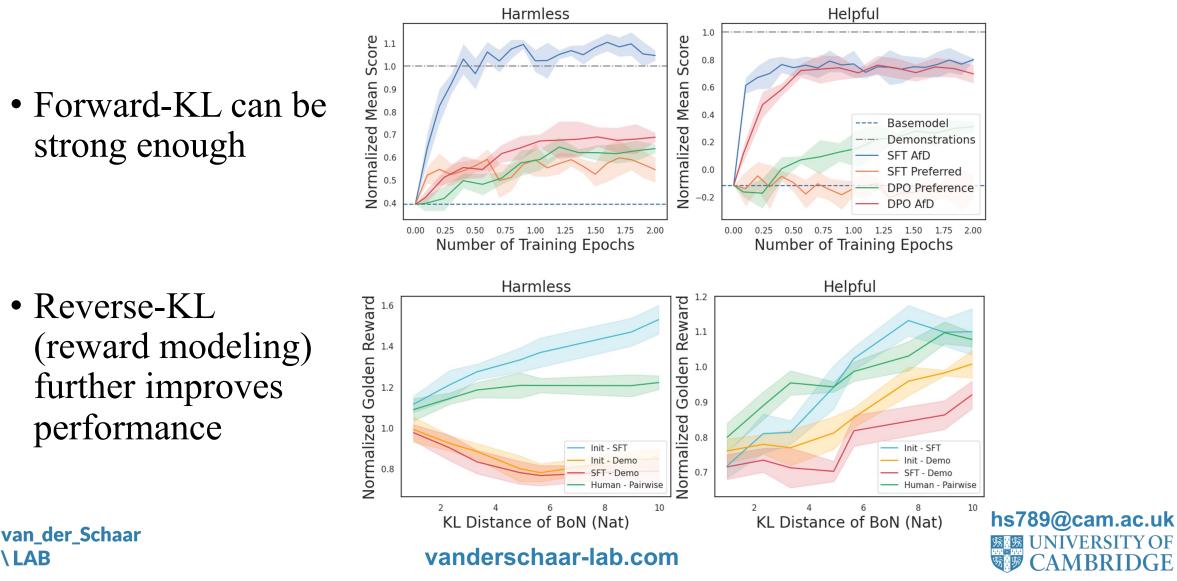


- From an IRL perspective
 - Distributional matching
 - SFT = Forward KL for distribution matching
 - Reverse KL? requires (smart) reward modeling

e.g., Prescribe a medicine Stylize...







MBRIDGE

Thank you!

References

[Position] Improving LLM Generation with Inverse and Forward Alignment: Reward Modeling, Prompting, Fine-Tuning, and Inference-Time Optimization NeurIPS'2024 System2 Reasoning workshop Hao Sun, Thomas Pouplin, Nicolás Astorga, Tennison Liu, Mihaela van der Schaar

[Prompt-OIRL] *Query-Dependent Prompt Evaluation and Optimization with Offline Inverse RL ICLR '2024* Hao Sun, Alihan Hüyük, Mihaela van der Schaar

[DenseReward] Dense Reward for Free in Reinforcement Learning from Human Feedback ICML'2024 Alex Chan, **Hao Sun**, Samuel Holt, Mihaela van der Schaar

[DataCOPE] When is Off-Policy Evaluation (Reward Modeling) Useful in Contextual Bandits? A Data-Centric Perspective Journal of Data-Centric Machine Learning Research (DMLR) Hao Sun*, Alex Chan*, Nabeel Seedat, Alihan Hüyük, Mihaela van der Schaar

[InverseRLignment] Inverse-RLignment: Inverse Reinforcement Learning from Demonstrations for LLM Alignment RLC'2024 RL Beyond Reward workshop Hao Sun and Mihaela van der Schaar

[RATP] Retrieval Augmented Thought Process for Private Data Handling in Healthcare Preprint Thomas Pouplin*, **Hao Sun***, Samuel Holt, Mihaela van der Schaar

[RMBeyondBT] Rethinking the Bradley-Terry Models in Preference-based Reward Modeling: Foundation, Theory, and its Alternatives *Preprint* **Hao Sun***, Yunyi Shen*, Jean-Francois Ton

vanderschaar-lab.com

hs789@cam.ac.uk