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LLMs: Language Imitators
• How are LLMs trained?
• Pre-training phase: supervised-learning
• Post-training phase: SFT, RLHF … 

• What are LLMs?
• LLMs can provide approximate knowledge [1]
• But they are MERELY experts for ANYTHING.

   We need Reward Models
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--- Imitating Natural Language

[1] Kambhampati, Subbarao, et al. "LLMs Can't Plan, But Can Help Planning in LLM-Modulo Frameworks." arXiv preprint arXiv:2402.01817 (2024).
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• Reward models --- Foundation of LLM Optimization
• From an RL Perspective, 

RM is the only missing part of an “RL-solvable task”
• From an LLM Perspective, 

RM enables Inference-time Optimization
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Key of o1: Process Reward, Search-based generation, RMs
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RM from Binary Data: IRL for Prompt Optimization

• Prompt engineering is useful, but empirical…

• Automatic prompt engineering is expensive…
• Prompt-Dependent
• Huge vocabulary space
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RM from Binary Data: IRL for Prompt Optimization

• Learning from demonstrations can be more efficient than from scratch
• RL Recap: Learning from interactions 

• Prompt Optimization as Inverse RL: learning from demonstrations
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• Offline Inverse RL for Prompt Optimization
• Existence of demonstration dataset:

• Inverse RL: 
• Reward Modeling
• Prompt Optimization
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• In chat tasks, online preference data can be available
• How to build reward model?

• RLHF: “use the Bradley-Terry Model”
• But why?

• What is the Bradley Terry Model?
• Player i, with ability score 𝑟!
• Player j, with ability score 𝑟"
• In a game between player i and j, 𝑃 𝑖	wins	𝑗 = #!

#!$#"
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• In Chess/StarCraft/DOTA II: we estimate player scores using match history/outcomes
• In LLM arena, we have 150 models, 2M competitions, each LLM plays 26,000+ games

We need a large number of matches/games for a consistent estimation.
e.g., consider sorting: we need 𝑵𝐥𝐨𝐠𝑵

• In RLHF, 
• we have m prompts, 2m responses --- 2m players
• Each pair only “compete” once --- 𝑚 ≪ 2𝑚log 2𝑚  comparisons
• ⚠ We have more than 2m parameters to estimate --- ⚠ ⚠ ⚠ we need predictions! 
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• Why does BT model work?
• We are working on the embedding space
• Generalizable…
• Theoretical justification is in the paper

• Is BT model necessary?
• Rethinking the objective of BT model: precisely predicting win rates
• Is it necessary in RLHF?
• NO, we only need order consistency --- order of prediction is aligned with data
• Binary classification J
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• How good are classifiers?
• Flexible
• Better than BT models
• Robust to annotation noises and data scarcity (more in paper)
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RM from Demonstration: Inverse RL for Alignment

• Common practice of alignment: RLHF

• Why do we need to align LLMs from demonstrations?
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• Common practice of alignment: RLHF

• Why do we need to align LLMs from demonstrations?
• 1. Preference-based alignment is expensive
• 2. Assumptions such as Bradley-Terry models are needed
• 3. Noisy preference annotations
• 4. Privacy concerns
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• Our solution: Alignment from Demonstrations using Inverse RL

          e.g., Prescribe a medicine
                  Stylize…
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• Our solution: Alignment from Demonstrations using Inverse RL

          e.g., Prescribe a medicine
                  Stylize…

• From an IRL perspective
• Distributional matching
• SFT = Forward KL for distribution matching
• Reverse KL? requires (smart) reward modeling
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• Forward-KL can be 
strong enough
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• Forward-KL can be 
strong enough

• Reverse-KL 
(reward modeling)
further improves 
performance
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RM from Demonstration: Inverse RL for Alignment



Thank you!
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