
Reinforcement Learning
in the Era Of
LLMs

Sep. 2023

Hao Sun

University of Cambridge

hs789@cam.ac.uk

Content

• Introduction to RL

• Reinforcement Learning from Human Feedback

• RL + LLMs

Some ‘Terms’ You May Have Heard About…

• Markov Decision Processes

• States, Observations, Transitions (Dynamics), Actions, Rewards, Discout Factors…

• Model-Based / Model Free

• Value-Based / Policy-Based / Actor-Critic

• On-Policy / Off-Policy

• Online / Off line

• Discrete Control / Continuous Control

But those are not necessary…

• Markov Decision Processes

• States, Observations, Transitions (Dynamics), Actions, Rewards, Discout Factors…

• Model-Based / Model Free

• Value-Based / Policy-Based / Actor-Critic

• On-Policy / Off-Policy

• Online / Off line

• Discrete Control / Continuous Control

Essential Ideas

• What is RL?

An agent learns from trial and error, to maximize a cumulative reward.

• agent: can be human or neural networks. It has a policy (clinical guidelines, public
policies)

• trial and error: Online or Off line? Real or (data-drive) Simulator?

• cumulative reward: the Reward Hypothesis

Reward Can be Sparse…

• “Win the game”, but how?

• Imitation Learning (IL) Can Help.

• 1. Behavior Clone
Pros: Simple, Does not need further interactions with the environment
Cons: Compounding error, multi-modality modeling

• 2. GAIL: Generative Adversarial Imitation Learning [Ho et al. 2016]

Pros: Solves the above cons.
Cons: Needs more interactions

Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation learning." Advances in neural information processing systems 29 (2016).

Difference between Inverse RL and IL

• Inverse-RL ≈ Imitation Learning, with an emphasis on reward learning

Learning from logged trial and error, to find out what cumulative reward is
being optimized.

• logs can be either expert decisions or non-expert decisions. Extrapolation.

• trial and error are off line data

• (the estimated) reward can be used as an evaluator of trajectories/policies

Graph: RL and Off line-RL

Agent🤖 Replay📚
(s, a, r, s’)

Agent🤖 Env.🌍
🌍🟰⚙➕⚖

action

observation

reward

RL Offline-RL

Env.🌍🟰Dyn.⚙➕Rew.⚖

Graph: IL and IRL

Agent🤖 Dyn. ⚙

action

observation

IL

Replay📚
similarity

Agent🤖 Dyn. ⚙

action

observation

IRL: Potential to be better

Replay📚

Reward
Model⚖

reward

trajectory

LLM Alignment with Human Feedback

LLM🤖 Human
🧠

response

query

reward

• Why RL?
We can not define the desired objective as a
metric function.

We can not do back-prop through a black-box

🧠• Why not?

Too expensive.

tokens

Alignment as RL

LLM Alignment with Human Feedback

LLM🤖 Human
🧠

response

query

reward

• Why RL?
We can not define the desired objective as a
metric function.

We can not do back-prop through a black-box

🧠• Why not?

Too expensive.

OpenAI: unless you have enough volunteers
(users)…

tokens

Alignment as RL

LLM Alignment with GPT-4 Feedback?

LLM🤖 Human
🧠

response

query

reward

Alignment as RL

• Why RL?
We can not define the desired objective as a
metric function.

We can not do back-prop through a black-box

🧠• Why not?

Too expensive.

OpenAI: unless you have enough volunteers
(users)…

tokens

GPT-4?
🧠

LLM Alignment with Human Feedback Logs

LLM🤖 Human
🧠

response

query

Preference

Preference Data Generation

LLM🤖Instruction
Following 📚

(query, preferred responses)

Alignment as Offline-RL

tokens

Alignment as Off line-RL: How to Learn?

LLM🤖Instruction
Following 📚

(query, preferred responses)

Alignment as Offline-RL

• We can always use behavior clone.
BC = SFT, supervised-fine-tuning

• It is simple, stable, efficient.

• But language modeling is not 1-step decision.

Compounding errors

What Makes LLM Alignment Special?
• The transition dynamics is deterministic and known!

Instruction
Following 📚

LLM🤖
⚙

query

response

tokens

What Makes LLM Alignment Special?
• The transition dynamics is deterministic and known!

• Recall the framework of Imitation Learning.

Instruction
Following 📚

LLM🤖
⚙

query

response

tokens

Agent🤖 Dyn. ⚙

action

observation

IL

Replay📚

trajectory

RLHF: Solving Off line-RL via Online Inverse RL
• Inverse RL: learn the reward model, then optimize the policy.

Instruction
Following 📚

LLM🤖
⚙

query

response

tokens

LLM🤖
⚙

response

Instruction
Following 📚

Reward
Model⚖

reward
tokens

query

SFT vs RLHF*: from the RL Perspective

• LLM alignment with logged human feedback (preference) can be interpreted as
1. Offline-RL --- solve it with behavior clone --- SFT

2. Imitation Learning --- solve it with IRL --- RLHF

• We can always do both:
RLHF using SFT as a warm-start

• Potential Alternatives? Someone would try GAIL...

* OpenAI’s SFT is based on a separated high-quality response written by human.

RLHF

• Underlying assumptions:
1. Learning a reward model is statistically easier than directly learning aligned LLMs.

2. There are some higher-level metrics that can not be captured by token-level distances.

• Two steps

1. Reward Learning (Response Evaluation)

2. LLM Optimization (Response Optimization)

Step 1. Reward Model Learning

• Ranking is better than scoring, because the latter is noisier.

• LM with different sizes are used:

OpenAI: 6B RM for 175B LM

DeepMind: 75B RM for 75B LM

• Core Idea: The RM should be able to understand responses.

RM Implementation:

• Basic component: 𝜓: pre-trained LM with last layer replaced by linear.
Ranking Loss [Stiennon et al. 2020]

ℒ! 𝜓 = − log 𝜎(𝑟" 𝑥, 𝑦# − 𝑟" 𝑥, 𝑦$)
Alternatively [Askell et al 2021]

ℒ! 𝜓 = log(1 + exp(𝑟" 𝑥, 𝑦$ − 𝑟" 𝑥, 𝑦#))

• Imitation Loss [Askell et al 2021]

ℒ%& 𝜓' = −log𝑃"!(𝑦#|𝑥) = − 6
(

)*+,-

log 𝑃"!(𝑦#
(|𝑦#

)(, 𝑥)

• RM Learned: ℛ!

𝑟" = argmin
"
𝜆ℒ! 𝜓 + 𝛽ℒ%& 𝜓'

Stiennon, Nisan, et al. "Learning to summarize with human feedback." Advances in Neural Information Processing Systems 33 (2020): 3008-3021.
Askell, Amanda, et al. "A general language assistant as a laboratory for alignment." arXiv preprint arXiv:2112.00861 (2021).

RM Implementation:

• Regularizer: KL-div
ℛ!" 𝜋#$" = KL 𝜋#$" 𝑦 𝑥 𝜋#.

%&' 𝑦 𝑥

• Total Reward:
ℛ()(*+ = 𝑟, − 𝜂ℛ!"

• Intuitive Interpretation by maximizing this reward:
Maximize the sentence-level reward, while minimize the changes made to the SFT (base) model.

Stiennon, Nisan, et al. "Learning to summarize with human feedback." Advances in Neural Information Processing Systems 33 (2020): 3008-3021.
Askell, Amanda, et al. "A general language assistant as a laboratory for alignment." arXiv preprint arXiv:2112.00861 (2021).

Training Details

• Model: LLaMA-7B / OpenChineseLLaMA

• Dataset (en): HH-RLHF 118k helpful + 42k harmless as train, 7.5k as val., 1k as test.

• Dataset (zh): annotated 31k helpful + 8k harmless, 30k train, 6k val., 3k as test.

• Results:

Step 2. Learning with RM

• RL Algorithms
- PPO: (Secrets of RLHF in Large Language Models)

- ILQL

Challenges:

- multiple LLMs required. e.g., reference model, actor, critic, reward model.

- not stable, hard to train, sensitive to hyper-params & seeds.

• Evolution Strategies can be a scalable alternative [Salimans et al. 2017]

- RAFT

- RRHF

Sample a batch, and select the best using RM

Salimans, Tim, et al. "Evolution strategies as a scalable alternative to reinforcement learning." arXiv preprint arXiv:1703.03864 (2017).

LLM🤖
⚙

response

Instruction
Following 📚

Reward
Model⚖

reward
tokens

query

https://arxiv.org/pdf/2307.04964.pdf

An Empirical Study on PPO in RLHF [Zheng et al. 2023]

• Stable training of RLHF is still a
puzzle

• Policy Constraints is important

• PPO-Max: empirical tricks

• Summary: stabilize training

Zheng, Rui, et al. "Secrets of RLHF in Large Language Models Part I: PPO." arXiv preprint arXiv:2307.04964 (2023).

More Details
• 4 models need to be loaded

Reference model and policy model are init by 7B SFT model

Use reward model to init the critic.

• 8 x A100 GPU + 1TB RAM + 128CPU

• Debug:

Monitoring Metrics

Smaller Datasets

• PPO-Max performs like…

More Details
• 4 models need to be loaded

Reference model and policy model are init by 7B SFT model

Use reward model to init the critic.

• 8 x A100 GPU + 1TB RAM + 128CPU

• Debug:

Monitoring Metrics

Smaller Datasets

• PPO-Max performs like…

RAFT: Reward rAnked Fine Tuning

• Best-of-N: 1. sample N for each query; 2. select the best-of-N; 3. supervised update

• Much less hyper-params.

Resources

• GitHub Repo on RLHF: https://github.com/opendilab/awesome-RLHF

• Secrets of RLHF in Large Language Models https://github.com/OpenLMLab/MOSS-
RLHF

• RAFT Official Implementation: https://github.com/OptimalScale/LMFlow

• TRL/ TRLx by huggingface: https://github.com/huggingface/trl

• RL4LMs: https://github.com/allenai/RL4LMs

https://github.com/opendilab/awesome-RLHF
https://github.com/OpenLMLab/MOSS-RLHF
https://github.com/OptimalScale/LMFlow
https://github.com/huggingface/trl
https://github.com/allenai/RL4LMs

Instruction Following by Prompting

• Prompt engineering is an effective approach in eliciting the abilities of LLMs

• In-context Learning/Fine-tuning

Few-Shot Prompting + In-Context Learning

Zero-Shot Prompting

• Examples:

CoT: let’s think step by step…

OPRO: take a deep breath …

• How to design? Previous approaches: learning from trial and error.

Instruction Following by Prompting

Prompt
Engineer 🧠

LLMs⚙

Prompted Query

Response

Prompt Engineers are doing RL

Metric⚖

Query
• Make it automatic?

RL Agent

🤖

as Prompt Engineer

• Challenges:

Too expensive to explore

The action space is too large

Prompter Alignment with LLM Feedback

• We are aligning prompter using feedback from LLMs.

• Inspired by the great success of RLHF, can we do Imitation Learning?

Prompting
Experience📚

Prompt
Engineer 🤖

LLMs⚙

Prompted Query

Response

Metric⚖

Query

Evaluate Existing Prompts as Off line Dataset

• For the same query, prompt engineers have tried different prompts
e.g., on the GSM8K dataset, CoT, APE, ToT prompts are evaluated

consider there are N queries with golden answers, and M prompting strategies.

Prompt
Engineer 🤖

Prompting
Experience📚

(querie, prompt, response, correctness of answer)

𝑞- , 𝑝. , 𝑎-. , 𝑟-. -∈ 0 ,.∈[3]

How to learn?

Inverse RL

Prompting
Experience📚

Prompt
Engineer 🤖 LLMs⚙

Prompted Query

Response

Agent🤖 Dyn. ⚙

action

observation

IRL

Replay📚

Reward
Model⚖

reward Reward
Model⚖

Prompting as IRL

Inverse RL

Prompting
Experience📚

Prompt
Engineer 🤖 LLMs⚙

Prompted Query

Response

Agent🤖 Dyn. ⚙

action

observation

IRL

Replay📚

Reward
Model⚖

reward Reward
Model⚖

Prompting as IRL

Offline Inverse RL

Prompting
Experience📚

Prompt
Engineer 🤖 LLMs⚙

Prompted Query

Response

Reward
Model⚖

Prompting
Experience📚

Prompt
Engineer 🤖

Prompt

Reward
Model ⚖

Prompting as IRLPrompting as Off line IRL

Reward Model: 𝑞" , 𝑝# ↦ 𝑟"#; Reward Model: 𝑞" , a"# ↦ 𝑟"#

Prompt-OIRL

• Offline Prompt Evaluation and Optimization with IRL [Sun et al. 2023]

• Two Steps:

1. Reward Model Learning --- for Prompt Evaluation

2. Prompt Optimization --- with the learned reward model

Sun, Hao et al. "Offline Prompt Evaluation and Optimization with Inverse Reinforcement Learning." arXiv preprint arXiv:2309.06553 (2023).

Reward Model Learning

• �̂� is learned by supervised learning:

ℒ56(�̂�) = −𝔼-. 𝑟-. log 𝜎 �̂� 𝑞- , 𝑝. + 1 − 𝑟-. log 1 − 𝜎 �̂� 𝑞- , 𝑝.

• �̂� is	different	from	the	original	evaluation	metric	function	in	that

�̂� = �̂� 𝑞- , 𝑝. does	not	require	access	to	the	LLMs,	yet	 𝑟 = 𝑟 𝑞, 𝑙𝑙𝑚(𝑝 + 𝑞)

�̂� can	do	evaluation,	but		𝑟can	not	(estimate	whether	the	answer	is	correct	in	test	time)

• q	and	p	in	experiments	are	represented	by	their	embeddings.

Prompt Optimization

• With �̂�, prompt optimization can be executed without LLMs:
𝑝-∗ 𝑞- = argmax

8
�̂� 𝑞- , 𝑝

• The optimized prompt is query-dependant

• How to instantiate this argmax?

1. Reinforcement learning: train a prompting LM

2. Sample N and select the best

Prompt Optimization

• With �̂�, prompt optimization can be executed without LLMs:
𝑝-∗ 𝑞- = argmax

8
�̂� 𝑞- , 𝑝

• The optimized prompt is query-dependant

• How to instantiate this argmax?

1. Reinforcement learning: train a prompting LM

2. Sample N and select the best

Results

• Experiments on Arithmetic Reasoning Datasets (GSM8K, SVAMP, MAWPS)

• TakeAways:

1. Prompt-OIRL further improve the ability of LLMs in inference.

2. It is extremely cheap to train and deploy Prompt-OIRL.

Summary

• RL is learning from trial and errors to maximize a cumulative reward.

• Define reward function can be easy, but exploration of RL is hard.

• With expert demonstrations, IL can improve learning efficiency.

• Behavior Clone is the simplest IL, but it suffers from compounding errors.

• IRL first learns a RM, and then use the learned RM to optimize policy.

• SFT is behavior clone, RLHF is online IRL.

• Given an RM, there are multiple approaches to optimize LLMs to align with human.

• Prompt optimization can be formulated as an (extremely hard) RL problem.

• Using Off line-IRL, prompt optimization can be much easier.

• Prompt-OIRL is able to effectivly and efficiently perform off line promt evaluation and optimization.

